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DeepSolid neural network wavefunction ansatz troductio
- o "Self-Generative" * Neural networks are powerful ansatz for vari-
{r} el s &R ® O?ﬁmizatio antional Monte Carlo
el Tog ol 'c_? /\ * For energy, DMC or CCSD(T) level of accuracy
T¥ = 3 or beyond can be reached
E‘ @b (I‘) VQF * Many observables are much easier to calculate
=2 2 VMC in VMC than DMC
g % Procedure o o e.g. electric polarization & interatomic force
QO / 5" o VMC could not be used in the past because it
%) & was inaccurate
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Adculdl F=F—-—QcE P Theory of polarization
FCI OBC PBC Electric enthalpy Difference of polarization matters!

1
AP = dt dr j(r, t
Berry phase theory of polarization / Veell /C il j(x, )

Regarding j as the adiabatic current, P is related
to the Berry phase!

e
P = (QH)BImZn:/dk (Unk|Vi|tnk)

We can use single point Berry phase for many-
body wavefunction (1D example):
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Landscape of ab initio methods for polarization P = —a%lm In (] “% )
Interatomic force Polarization calculations
Coulomb force has infinite variance. > . | . .
dditional Wanted —O=0—0O=0O— * Conventional DFT overestimates the dielectric constant.
) _ e _l_f(?_na___ _ e £5 73 - * Our method (DS) is efficient and accurate on atoms, chains, slabs,
A L L -+ | | = = cubes, and graphene
Original S 40 o Agrees well with CCSD(T) and experimental results.
4 P est | | = 28.29 55 56 26.58 o CCSD(T) results are extrapolated from OBC results, and are ex-
Fig. 4: I'ind estimators to reduce variance QQ 20 | pensive.
For example, & * Qut-of-plane dielectric constant for bilayer graphene.
F, = (EL) — _%EL +2((EL) — EL)()a log (|17 0 LDA B3LYP HF CCSD(T) DS o Agrees with previous calculations, and verified ey (d) around
dRA R Ra L o | equilibrium.
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Fig. 5: Average force error over bond lengths 0 LiH NaH KH RbH CsH 1 < 3 4 5 6
‘Af better neural network glv.es better. Wavefunc.:— Fig. 2: High-frequency dielectric constant e, of alkali d (A)
tion, and the error and variance of interatomic metal hydrides Fig. 3: Dielectric constant for bilayer graphene
force can be improved with a better neural net-
WorR. .
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Fig. 6: Force error on Lip and Ny with different qualities 7 ?ﬁ;l;?grinteratomlc force by having a better wave-
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