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Introduction

•Neural networks are powerful ansatz for vari-
antional Monte Carlo

• For energy, DMC or CCSD(T) level of accuracy
or beyond can be reached

•Many observables are much easier to calculate
in VMC than DMC

◦ e.g. electric polarization & interatomic force
◦VMC could not be used in the past because it
was inaccurate

Theory of polarization

Difference of polarization matters!
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Regarding j as the adiabatic current, P is related
to the Berry phase!
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We can use single point Berry phase for many-
body wavefunction (1D example):
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Polarization calculations

Fig. 1: Susceptibility of hydrogen chain

• Conventional DFT overestimates the dielectric constant.

•Ourmethod (DS) is efficient and accurate on atoms, chains, slabs,
cubes, and graphene

◦Agrees well with CCSD(T) and experimental results.
◦CCSD(T) results are extrapolated fromOBC results, and are ex-
pensive.

•Out-of-plane dielectric constant for bilayer graphene.

◦Agrees with previous calculations, and verified &⊥∞(3) around
equilibrium.

Fig. 2: High-frequency dielectric constant &∞ of alkali
metal hydrides Fig. 3: Dielectric constant for bilayer graphene

Interatomic force

Coulomb force has infinite variance.
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Fig. 4: Find estimators to reduce variance
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Fig. 5: Average force error over bond lengths

A better neural network gives better wavefunc-
tion, and the error and variance of interatomic
force can be improved with a better neural net-
work.
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Fig. 6: Force error on Li2 and N2 with different qualities
of neural network

Conclusion

•We proposed an efficient and accurate method
for electric polarization.

•We implemented and tested different estimators
for force calculation.

•Neural networks boost QMC:

◦ Filling the gap of high-accuracy electric polariza-
tion calculation.

◦Benefit interatomic force by having a better wave-
function.
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